모델 만들기
1. List
2. Paper
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
3. Article (Post, blog, etc.)
Types of Optimization Algorithms used in Neural Networks and Ways to Optimize Gradient Descent
- Learning I: the value of pre-training
- Learning II: caveats of real-world label distributions
Learning III: understanding black box models
An end to end implementation of a Machine Learning pipeline: github
Hyperopt tutorial for Optimizing Neural Networks’ Hyperparameters
14 DESIGN PATTERNS TO IMPROVE YOUR CONVOLUTIONAL NEURAL NETWORKS>/del>: 추천10 steps to bootstrap your machine learning project: (part 1), (part 2)]
Improve your neural networks: (Part 1), (Part 1한글)
Must Know Tips/Tricks in Deep Neural Networks (by Vincent Granville)
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
Machine Learning Pipeline: 조대협, 머신러닝 시스템 프로세스와 아키텍쳐
Train your deep model faster and sharper — two novel techniques
Am I overfitting?
- Very high accuracy on the training dataset (eg: 0.99)
Poor accuracy on the test data set (0.85)
머신러닝 모델 개발 삽질 경험기: 조대협
학습 조기종료 시키기: 조기 종료하는 시점
[추천]전처리
- cifarnet_preprocessing.py
- inception_preprocessing.py
- lenet_preprocessing.py
- preprocessing_factory.py
vgg_preprocessing.py
Here are some resources for tips and tricks for training neural networks. (Resource 1, Resource 2, Resource 3)
- Limitation / Further Readings: catastrophic forgetting
QnA
Why does learning curve of my model shows large variance in training error? How to fix it?
How big should batch size and number of epochs be when fitting a model in Keras?
How to design deep convolutional neural networks?:결론은 정해진 룰 없음. 경험적으로 반복 수행으로 찾아 내는것임
3. Tutorial (Series, )
4. Youtube
6. Material (Pdf, ppt)
7. Implementation (Project)
8. Research Group / Conference
DeepLearning Project Workflow라고 읽고 Bias-Variance Tradeoff에 가까운데 가끔 비슷한 질문이 올라오는 것 같아서 올립니다.
모델 성능이 원하는대로 나오지 않을때
1) 데이터를 더 모아야 하는지 2) 더 큰 모델을 만들어야 할 지
High bias, High Variance 체크를 통해 간단히 판단하는 법입니다. http://fbsight.com/t/deeplearning-project-workflow-bias-variance-tradeoff/78035
Some important parameters to look out for while optimizing neural networks are:
- Type of architecture
- Number of Layers
- Number of Neurons in a layer
- Regularization parameters
- Learning Rate
- Type of optimization / backpropagation technique to use
- Dropout rate
- Weight sharing
- etc.
- etc for CNN : convolutional filter size, pooling value, etc.
Tools
-Xcessiv: 웹에서 모델과 데이터를 지정하고 하이퍼파라미터 탐색을 위한 조건을 걸어서 자동으로 튜닝해주는 코드
-
나만의 모델을 만들어 보자
[추천]Use Keras Deep Learning Models with Scikit-Learn in Python: Keras와 Scikit-Learn을 이용한 성능향상
How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras