- List of Reinforcement Learning 전반: Reinforcement Learning Algorithms in Python,OpenAI Gym, Tensorflow [2,185 stars on Github]
Article / post
- Simple reinforcement learning methods to learn CartPole : OpenAI gym에서 만나는 가장 쉬운 강화학습 샘플인 카트폴을 상세히 풀이하여 소개
- 강화학습 튜토리알 - 인공 신경망으로 ‘퐁’ 게임을 학습시키자 : Karpathy의 Pong 강화학습 튜토리얼을 한글로 훌륭하게 번역
- Simple Reinforcement Learning : 텐서플로우를 이용한 강화학습 자료를 올리고 있는 Arthur Julinani의 미디엄
- Machine Learning 스터디 (20) Reinforcement Learning : 스탠포드 CS229 강의 노트를 기반으로 작성한 강화학습 한글 문서
- Simple Beginner’s guide to Reinforcement Learning & its implementation
- Deep Learning Research Review: Reinforcement Learning : By Adit Deshpande, UCLA.
- Youtube:Tutorial: Introduction to Reinforcement Learning with Function Approximation,[ppt]
- 이웅권의 Reinforement GitBook
- Deep Reinforcement Learning (John Schulman, OpenAI) :[Youtube1] and [Youtube2]
- 추천_모음
- eBook: Reinforcement Learning: An Introduction
- ICML 2016 RL by David Silver :일반적인 RL,알파고 집중 분석
- Kim Sung's RL Study plan
- 모두의연구소_Reinforcement Learning 그리고 OpenAI
- 강화학습 튜토리알 - 인공 신경망으로 '퐁' 게임을 학습시키자 (Andrej Karpathy 포스트 번역)_
- ppt_InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- 강화 학습 기초 Reinforcement Learning an introduction : 김태훈(carpedm20)
- ICML: Tutorial Deep Reinforcement Learning : David Silver
Evolution Strategies as a Scalable Alternative to Reinforcement Learning: 진화알고리즘 적용, OpenAI
강화학습 예제 14: RLCode팀이 직접 만든 강화학습 예제들을 모아놓은 Repo 입니다
DQN의 단점을 보안한 제안(2016)
one-step-Q-learning algorithm for this AI : q-learning 을 이용한 틱-택-토 AI 를 만들어보았습니다.
Youtube
Tutorial
GitHub: Practical_RL : HSE대학교 강의 자료
Gitbook:Fundamental of Reinforcement Learning: 모두의 연구소 Woong won, Lee
강화학습 그리고 OpenAI: 모두의 연구실 자료
- Introduction to OpenAI
- 2-1. Intro to Reinforcement Learning (1) MDP & Value Function
- 2-2. Intro to Reinforcement Learning (2) Q Learning
- 3-1. CartPole with Deep Q Learning (1) CartPole example
- 3-2. CartPole with Deep Q Learning (2) DQN
- 3-3. CartPole with Deep Q Learning (3) TensorFlow
- 3-4. CartPole with Deep Q Learning (4) Code review
- 4-1. CartPole with Policy Gadient (1) Policy Gradient
- 4-2. CartPole with Policy Gadient (2) Code review
- 5-1. about Atari games
- 5-2. Atari "Pong"
- 5-3. Atari "Breakout"
Paper
- Deep Reinforcement Learning: An Overview : Yuxi Li
FeUdal Networks for Hierarchical Reinforcement Learning : Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, Koray Kavukcuoglu(2017.03)
Overcoming catastrophic forgetting in neural networks: 강화학습 + transfer-learning
- the concept of transfering the learning of reinforcement agents from environment to environment.
Inverse reinforcement-learning
- ppt: Inverse Reinforcement Learning Algorithms : Sungjoon Samuel 작성
VizDoom
- 설명_설치: 3D 환경에서 동작하는 Agent
Implementation
- A set of Deep Reinforcement Learning Agents implemented in Tensorflow. : Reinforcement Learning with TensorFlow&OpenAI Gym강의
텐서플로우(TensorFlow)를 이용해 간단한 DQN(Deep-Q-Networks) 에이전트를 만들어 보기 (CatchGame)
Human-Level Control through Deep Reinforcement Learning: Songrotek, DQN-Tensorflow
4. Simple Reinforcement Learning with Tensorflow
- Part 0: Q-Learning with Tables and Neural Networks, [번역]
- Part 1 - Two-armed Bandit,[번역]
- Part 1.5: Contextual Bandits, [번역]
- Part 2 : Policy-Based Agents, [번역]
- Part 3 : Model-Based RL, [번역]
- Part 4 : Deep Q-Networks and Beyond, [번역]
- Part 5 : Visualizing an Agent’s Thoughts and Actions, [번역]
- Part 6 : Partial Observability and Deep Recurrent Q-Networks, [번역]
- Part 7 : Action-Selection Strategies for Exploration, [번역]
- Part 8 : Asynchronous Actor-Critic Agents (A3C), [번역]
Learning Reinforcement Learning (with Code, Exercises and Solutions) : 6장 구성, 추천
- Introduction to RL problems, OpenAI gym
- MDPs and Bellman Equations
- Dynamic Programming: Model-Based RL, Policy Iteration and Value Iteration
- Monte Carlo Model-Free Prediction & Control
- Temporal Difference Model-Free Prediction & Control
- Function Approximation
- Deep Q Learning (WIP)
- Policy Gradient Methods (WIP)
- Learning and Planning (WIP)
- Exploration and Exploitation (WIP)
2.
Lecture 1: 수업의 개요 비디오 강의 슬라이드 Lecture 2: OpenAI GYM 게임해보기 비디오 강의 슬라이드
Lab 2: OpenAI GYM 게임해보기 실습 비디오 실습슬라이드
Lecture 3: Dummy Q-learning (table) 비디오 강의 슬라이드
Lab 3: Dummy Q-learning (table) 비디오 실습슬라이드
Lecture 4: Q-learning exploit&exploration and discounted reward 비디오 강의 슬라이드
Lab 4: Q-learning exploit&exploration and discounted reward 비디오 실습슬라이드
Lecture 5: Q-learning in non-deterministic world 비디오 강의 슬라이드
Lab 5: Q-learning in non-deterministic world 비디오 실습슬라이드 Lab 5-1: Q-learning web Demo 비디오
Lecture 6: Q-Network 비디오 강의 슬라이드
Lab 6-1: Q Network for Frozen Lake 비디오 실습슬라이드 Lab 6-2: Q Network for Cart Pole 비디오 실습슬라이드
Lecture 7: DQN 비디오 강의 슬라이드
Lab 7-1: DQN 1 (NIPS 2013) 비디오 실습슬라이드 Lab 7-2: DQN 2 (Nature 2015) 비디오 실습슬라이드 Lab 7-3: DQN Cart Pole Demo 비디오 Lab 7-4: DQN Simple Pacman Demo (여러분은 최고 몇점까지 갈수 있나요?) 비디오
ICML 2016 Tutorials
Material (ppt, pdf)
- [eBook]Reinforcement Learning:An Introduction: Richard S. Sutton and Andrew G. Barto, 2017, MIT출판, 538p