PCL-Python 기반
# from Bin
raw_lidar = np.fromfile('/datasets/testing/velodyne/000001.bin', dtype=np.float32).reshape((-1, 4))
#points = np.fromfile(v_path, dtype=np.float32, count=-1).reshape([-1, num_features]) #SECOND code
# to Bin
pc = pcl.load("./sample_lcas.pcd")
pa = pc.to_array()
pa.tofile('sample_lcas.bin')
# to Bin
pc = pcl.load("/workspace/_rosbag/office_bg_2018_10_22_pcd/1540261303.747807979.pcd")
pc_rgb=XYZ_to_XYZRGB(pc,[0,0,0] )
pa = pc_rgb.to_array()
pa.tofile('/workspace/_pcd/1540261303.747807979.bin')
Open3D-Python 기반
import os
import subprocess
import shutil
import open3d
from dataset.semantic_dataset import all_file_prefixes
def wc(file_name):
out = subprocess.Popen(
["wc", "-l", file_name], stdout=subprocess.PIPE, stderr=subprocess.STDOUT
).communicate()[0]
return int(out.partition(b" ")[0])
def prepend_line(file_name, line):
with open(file_name, "r+") as f:
content = f.read()
f.seek(0, 0)
f.write(line.rstrip("\r\n") + "\n" + content)
def point_cloud_txt_to_pcd(raw_dir, file_prefix):
# File names
txt_file = os.path.join(raw_dir, file_prefix + ".txt")
pts_file = os.path.join(raw_dir, file_prefix + ".pts")
pcd_file = os.path.join(raw_dir, file_prefix + ".pcd")
# Skip if already done
if os.path.isfile(pcd_file):
print("pcd {} exists, skipped".format(pcd_file))
return
# .txt to .pts
# We could just prepend the line count, however, there are some intensity value
# which are non-integers.
print("[txt->pts]")
print("txt: {}".format(txt_file))
print("pts: {}".format(pts_file))
with open(txt_file, "r") as txt_f, open(pts_file, "w") as pts_f:
for line in txt_f:
# x, y, z, i, r, g, b
tokens = line.split()
tokens[3] = str(int(float(tokens[3])))
line = " ".join(tokens)
pts_f.write(line + "\n")
prepend_line(pts_file, str(wc(txt_file)))
# .pts -> .pcd
print("[pts->pcd]")
print("pts: {}".format(pts_file))
print("pcd: {}".format(pcd_file))
point_cloud = open3d.read_point_cloud(pts_file)
open3d.write_point_cloud(pcd_file, point_cloud)
os.remove(pts_file)
if __name__ == "__main__":
# By default
# raw data: "dataset/semantic_raw"
current_dir = os.path.dirname(os.path.realpath(__file__))
dataset_dir = os.path.join(current_dir, "dataset")
raw_dir = os.path.join(dataset_dir, "semantic_raw")
for file_prefix in all_file_prefixes:
point_cloud_txt_to_pcd(raw_dir, file_prefix)
PCL-Cpp 기반 : https://blog.csdn.net/qq_22170875/article/details/90140851
import open3d
import numpy as np
import glob
import glob
list = glob.glob('./*.pcd')
for i in range(len(list)):
print(list[i])
point_cloud = open3d.read_point_cloud(list[i])
pc_array = np.asarray(point_cloud.points)
PATH = "./npy/" + list[i] + ".npy"
np.save(PATH, pc_array)