API설명 상세 : https://nlesc.github.io/python-pcl/

Community, 설치(gitbook)

image

PCL API Documentation Html, pdf

1. Modules (Library)

pcl_filters - 3D 점군 데이터에서 이상값과 노이즈 제거 등의 필터링 pcl_features - 점군 데이터로부터 3D 특징 추정 (feature estimation) 을 위한 수많은 자료 구조와 방법들 (surface normals, curvatures, boundary point estimation, moment invariants, principal curvatures, PFH & FPFH descriptors, spin images, integral images, NARF descriptors, RIFT, RSD, VFH, SHOT 등) pcl_keypoints - Keypoint (or interest point) 을 검출하는 알고리즘 구현 (BRISK, Harris Corner, NARF, SIFT, SUSAN 등) pcl_registration - 여러 데이터셋을 합쳐 큰 모델로 만드는 registration 작업 (ICP 등) pcl_kdtree - 빠른 최근거리 이웃을 탐색하는 FLANN 라이브러리를 사용한 kdtree 자료 구조 pcl_octree - 점군 데이터로부터 계층 트리 구조를 구성하는 방법 pcl_segmentation - 점군으로부터 클러스터들로 구분하는 알고리즘들 pcl_sample_consensus - 선, 평면, 실린더 등의 모델 계수 추정을 위한 RANSAC 등의 알고리즘들 pcl_surface - 3D 표면 복원 기법들 (meshing, convex hulls, Moving Least Squares 등) pcl_range_image - range image (or depth map) 을 나타내고 처리하는 방법 pcl_io - OpenNI 호환 depth camera 로부터 점군 데이터를 읽고 쓰는 방법 pcl_visualization - 3D 점군 데이터를 처리하는 알고리즘의 결과를 시각화

Module common : common data structures, computing distances/norms, means and covariances, angular conversions, geometric transformations

Module filters: outlier and noise removal mechanisms (eg. PassThrough, voxel grid)

Module features: data structures and mechanisms for 3D feature estimation from point cloud data

Module keypoints: keypoint detection algorithms

Module registration: Combining several datasets into a global consistent model is usually performed using a technique called registration

Module kdtree: kd-tree data-structure, Allows for fast nearest neighbor searches.

Module octree: efficient methods for creating a hierarchical tree data structure from point cloud data

  • Point Cloud Compression:
  • The pcl_octree implementation provides efficient nearest neighbor search routines, such as
    • "Neighbors within Voxel Search”,
    • “K Nearest Neighbor Search”
    • “Neighbors within Radius Search”.

Module segmentation: algorithms for segmenting a point cloud into distinct clusters

Module sample_consensus: SAmple Consensus (SAC) methods like RANSAC / models like planes and cylinders

Module surface: deals with reconstructing the original surfaces from 3D scans(eg. hull, a mesh representation or a smoothed/resampled)

Module recognition: algorithms used for Object Recognition

Module io: reading and writing point cloud data (PCD) files

  • The PCD (Point Cloud Data) file format
  • Reading PointCloud data from PCD files
  • Writing PointCloud data to PCD files
  • The OpenNI Grabber Framework in PCL
  • Grabbing point clouds from Ensenso cameras

Module visualization: visualize the results

Module Range Image : depth map

Module common : common data structures, computing distances/norms, means and covariances, angular conversions, geometric transformations

Module search : methods for searching for nearest neighbors using different data structures

results matching ""

    No results matching ""