Object Detection

  • Region 기반 딥러닝 : R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN

  • Grid 기반 딥러닝 : YOLO, DetectNet

    • YOLO는 이미지 내의 bounding box와 class probability를 single regression problem으로 간주하여, 이미지를 한 번 보는 것으로 오브젝트의 종류와 위치를 추측합니다
    • 아래와 같이 single convolutional network를 통해 multiple bounding box에 대한 class probability를 계산하는 방식을 취합니다.

년도 알고리즘 링크 입력 출력 특징
2014 R-CNN 논문 Image Bounding boxes + labels for each object in the image. AlexNet, 'Selective Search'사용
2015 Fast R-CNN 논문 Images with region proposals. Object classifications Speeding up and Simplifying R-CNN, RoI Pooling
2016 Faster R-CNN 논문 CNN Feature Map. A bounding box per anchor MS, Region Proposal
YOLO
SSD Faster R-CNN + YOLO

2017년 Mask R-CNN이 발표 되었지만 Segmentation 분야여서 포함 안함

참고 자료

Method VOC2007 VOC2010 VOC2012 ILSVRC 2013 MSCOCO 2015 Speed
OverFeat - - - 24.3% - -
R-CNN (AlexNet) 58.5% 53.7% 53.3% 31.4% - -
R-CNN (VGG16) 66.0% - - - - -
SPP_net(ZF-5) 54.2%(1-model), 60.9%(2-model) - - 31.84%(1-model), 35.11%(6-model) - -
DeepID-Net 64.1% - - 50.3% - -
NoC 73.3% - 68.8% - - -
Fast-RCNN (VGG16) 70.0% 68.8% 68.4% - 19.7%(@[0.5-0.95]), 35.9%(@0.5) -
MR-CNN 78.2% - 73.9% - - -
Faster-RCNN (VGG16) 78.8% - 75.9% - 21.9%(@[0.5-0.95]), 42.7%(@0.5) 198ms
Faster-RCNN (ResNet-101) 85.6% - 83.8% - 37.4%(@[0.5-0.95]), 59.0%(@0.5) -
SSD300 (VGG16) 72.1% - - - - 58 fps
SSD500 (VGG16) 75.1% - - - - 23 fps
ION 79.2% - 76.4% - - -
CRAFT 75.7% - 71.3% 48.5% - -
OHEM 78.9% - 76.3% - 25.5%(@[0.5-0.95]), 45.9%(@0.5) -
R-FCN (ResNet-50) 77.4% - - - - 0.12sec(K40), 0.09sec(TitianX)
R-FCN (ResNet-101) 79.5% - - - - 0.17sec(K40), 0.12sec(TitianX)
R-FCN (ResNet-101),multi sc train 83.6% - 82.0% - 31.5%(@[0.5-0.95]), 53.2%(@0.5) -
PVANet 9.0 81.8% - 82.5% - - 750ms(CPU), 46ms(TitianX)

출처 : 추후 살펴 보기, 블로그


성능향상 기법

results matching ""

    No results matching ""