caffe

1. 개요

출처 : Caffe 실습, SNU 패턴 인식 및 컴퓨터 지능 연구실, 박성헌, 황지혜, 유재영

  • Caffe : Convolutional Architecture for Fast Feature Embedding
  • Developed by the Berkeley Vision and Learning Center (BVLC)
  • Yangqing Jia, Evan Shelhamer, Travor Darrell

1.1 특징

  • Pure C++/CUDA architecture
  • Command line, Python, MATLAB interfaces
  • Fast, well-tested code
  • Pre-processing and deployment tools, reference models and examples
  • Image data management
  • Seamless GPU acceleration
  • Large community of contributors to the open-source project

1.2 기능

Data pre-processing and management : $CAFFE_ROOT/build/tools

  • Conversion from CSV and Images to LMDB

A. Data ingest formats

  • LevelDB or LMDB database
  • In-memory (C++ and Python only)
  • HDF5
  • Image files

B. Pre-processing tools

  • LevelDB/LMDB creation from raw images
  • Training and validation set creation with shuffling
  • Mean-image generation

C. Data transformations(tools.data_augmentation)

  • Image cropping, resizing, scaling and mirroring
  • Mean subtraction

1.3 이미지 처리

Caffe expects the images (i.e. the dataset) to be stored as blob of size (N, C, H, W)

  • N being the dataset size
  • C the number of channels
  • H the height of the images
  • W the width of the images.

1.4 LMDB I/O and Pre-processing

데이터를 LMDB에 넣어 처리 하는것을 선호

  • import lmdb :

2. 설치

  • 현재('17.03월) python2 만 지원

  • WITH_PYTHON_LAYER=1 option설치 필요

  • .bashrc 설정 필요

export OPENBLAS_NUM_THREADS=(4)
export CAFFE_ROOT=/home/david/caffe
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=/home/david/caffe/python:$PYTHONPATH

참고 : caffe-installation


https://youtu.be/Qynt-TxAPOs

results matching ""

    No results matching ""