#! /usr/bin/python

"""Surveillance Demo: Tracking Pedestrians in Camera Feed
https://github.com/techfort/pycv/blob/master/chapter8/surveillance_demo/main.py

The application opens a video (could be a camera or a video file)
and tracks pedestrians in the video.

1. Application Workflow
The application follows the following logic:
1 ) Check the first frame.
2 ) Check the frames entered later, and identify the pedestrians in the scene through the background splitter from the beginning of the scene.
3 ) Establish an ROI for each pedestrian and use Kalman/CAMShift to track the pedestrian ID .
4 ) Check if there is a pedestrian entering the scene in the next frame.
2 , functional programming and object-oriented programming
Functional programming is a programming paradigm ( paradigm ), many languages ​​are functional programming, they use the program as an estimated mathematical function, allowing the function to return a function, allowing the function as a parameter of another function . The advantage of functional programming is not only what it can do, but also what it can avoid, or whether it avoids side-effects and state changes.
3 , the program

"""
__author__ = "joe minichino"
__copyright__ = "property of mankind."
__license__ = "MIT"
__version__ = "0.0.1"
__maintainer__ = "Joe Minichino"
__email__ = "[email protected]"
__status__ = "Development"

import cv2
import numpy as np
import os.path as path
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("-a", "--algorithm",
    help = "m (or nothing) for meanShift and c for camshift")
args = vars(parser.parse_args())

def center(points):
    """calculates centroid of a given matrix"""
    x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4
    y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4
    return np.array([np.float32(x), np.float32(y)], np.float32)

font = cv2.FONT_HERSHEY_SIMPLEX

class Pedestrian():
  """Pedestrian class

  each pedestrian is composed of a ROI, an ID and a Kalman filter
  so we create a Pedestrian class to hold the object state
  """
  def __init__(self, id, frame, track_window):
    """init the pedestrian object with track window coordinates"""
    # set up the roi
    self.id = int(id)
    x,y,w,h = track_window
    self.track_window = track_window
    self.roi = cv2.cvtColor(frame[y:y+h, x:x+w], cv2.COLOR_BGR2HSV)
    roi_hist = cv2.calcHist([self.roi], [0], None, [16], [0, 180])
    self.roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

    # set up the kalman
    self.kalman = cv2.KalmanFilter(4,2)
    self.kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
    self.kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
    self.kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03
    self.measurement = np.array((2,1), np.float32)
    self.prediction = np.zeros((2,1), np.float32)
    self.term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
    self.center = None
    self.update(frame)

  def __del__(self):
    print "Pedestrian %d destroyed" % self.id

  def update(self, frame):
    # print "updating %d " % self.id
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    back_project = cv2.calcBackProject([hsv],[0], self.roi_hist,[0,180],1)

    if args.get("algorithm") == "c":
      ret, self.track_window = cv2.CamShift(back_project, self.track_window, self.term_crit)
      pts = cv2.boxPoints(ret)
      pts = np.int0(pts)
      self.center = center(pts)
      cv2.polylines(frame,[pts],True, 255,1)

    if not args.get("algorithm") or args.get("algorithm") == "m":
      ret, self.track_window = cv2.meanShift(back_project, self.track_window, self.term_crit)
      x,y,w,h = self.track_window
      self.center = center([[x,y],[x+w, y],[x,y+h],[x+w, y+h]])  
      cv2.rectangle(frame, (x,y), (x+w, y+h), (255, 255, 0), 2)

    self.kalman.correct(self.center)
    prediction = self.kalman.predict()
    cv2.circle(frame, (int(prediction[0]), int(prediction[1])), 4, (255, 0, 0), -1)
    # fake shadow
    cv2.putText(frame, "ID: %d -> %s" % (self.id, self.center), (11, (self.id + 1) * 25 + 1),
        font, 0.6,
        (0, 0, 0),
        1,
        cv2.LINE_AA)
    # actual info
    cv2.putText(frame, "ID: %d -> %s" % (self.id, self.center), (10, (self.id + 1) * 25),
        font, 0.6,
        (0, 255, 0),
        1,
        cv2.LINE_AA)

def main():
  # camera = cv2.VideoCapture(path.join(path.dirname(__file__), "traffic.flv"))
  camera = cv2.VideoCapture(path.join(path.dirname(__file__), "768x576.avi"))
  # camera = cv2.VideoCapture(path.join(path.dirname(__file__), "..", "movie.mpg"))
  # camera = cv2.VideoCapture(0)
  history = 20
  # KNN background subtractor
  bs = cv2.createBackgroundSubtractorKNN()

  # MOG subtractor
  # bs = cv2.bgsegm.createBackgroundSubtractorMOG(history = history)
  # bs.setHistory(history)

  # GMG
  # bs = cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames = history)

  cv2.namedWindow("surveillance")
  pedestrians = {}
  firstFrame = True
  frames = 0
  fourcc = cv2.VideoWriter_fourcc(*'XVID')
  out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
  while True:
    print " -------------------- FRAME %d --------------------" % frames
    grabbed, frame = camera.read()
    if (grabbed is False):
      print "failed to grab frame."
      break

    fgmask = bs.apply(frame)

    # this is just to let the background subtractor build a bit of history
    if frames < history:
      frames += 1
      continue


    th = cv2.threshold(fgmask.copy(), 127, 255, cv2.THRESH_BINARY)[1]
    th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)), iterations = 2)
    dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8,3)), iterations = 2)
    image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    counter = 0
    for c in contours:
      if cv2.contourArea(c) > 500:
        (x,y,w,h) = cv2.boundingRect(c)
        cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 255, 0), 1)
        # only create pedestrians in the first frame, then just follow the ones you have
        if firstFrame is True:
          pedestrians[counter] = Pedestrian(counter, frame, (x,y,w,h))
        counter += 1


    for i, p in pedestrians.iteritems():
      p.update(frame)

    firstFrame = False
    frames += 1

    cv2.imshow("surveillance", frame)
    out.write(frame)
    if cv2.waitKey(110) & 0xff == 27:
        break
  out.release()
  camera.release()

if __name__ == "__main__":
  main()

results matching ""

    No results matching ""