boston didi team

0. 환경 준비

# https://github.com/adioshun/gitBook_DeepDrive/blob/master/papermultiview-3d-cnn/environment_gpu.yml

# conda env create -f environment_gpu.yml --name mv3d_p3_gpu

conda create -n python35 python=3.5
conda install tensorflow-gpu opencv3 shapely scikit-learn keras Cython matplotlib simplejson numba
pip install easydict

0.1 GPU용으로 설정 변경

src/net/lib/setup.py and src/lib/make.sh : "arch=sm_37" #Google Cloud GPU Tesla K80

# Which CUDA capabilities do we want to pre-build for?
# https://developer.nvidia.com/cuda-gpus
#   Compute/shader model   Cards
#   6.1              P4, P40, Titan X so CUDA_MODEL = 61
#   6.0                    P100 so CUDA_MODEL = 60
#   5.2                    M40
#   3.7                    K80
#   3.5                    K40, K20
#   3.0                    K10, Grid K520 (AWS G2)
#   Other Nvidia shader models should work, but they will require extra startup
#   time as the code is pre-optimized for them.
CUDA_MODELS=30 35 37 52 60 61

test

import tensorflow as tf
sess = tf.Session()
print(tf.__version__) # version more than v1.

1. 데이터 다운로드

The KITTI Vision Benchmark Suite Raw Data

1.9 수정 필요

A.

  • data/raw/kitti/ 경로 밑에 데이터 위치
  • tracklet_labels.xml파일은 2011_09_26_drive_0001_sync 하위 폴더에 위치

B.

src/kitti_data/pykitti/tracklet.py L289에서 다운 받은 파일명으로 변경

DEFAULT_DRIVE = '2011_09_26_drive_0001'

2. ./src/make.sh

2.1 실행 방법

cd src
source activate didi
sudo chmod 755 ./make.sh
./make.sh

conda create -n python27 python=2.7

아래 [2.2]를 직접 실행 하는것 추천

2.2 실행시 진행 내용

#- `python ./net/lib/setup.py build_ext --inplace` : Fast R-CNN (MS)

#- 'bash ./net/lib/make.sh` : building psroi_pooling layer

#- build required .so files
ln -s ./net/lib/roi_pooling_layer/roi_pooling.so ./net/roipooling_op/roi_pooling.so
ln -s ./net/lib/nms/gpu_nms.cpython-35m-x86_64-linux-gnu.so ./net/processing/gpu_nms.cpython-35m-x86_64-linux-gnu.so
ln -s ./net/lib/nms/cpu_nms.cpython-35m-x86_64-linux-gnu.so ./net/processing/cpu_nms.cpython-35m-x86_64-linux-gnu.so
ln -s ./net/lib/utils/cython_bbox.cpython-35m-x86_64-linux-gnu.so ./net/processing/cython_bbox.cpython-35m-x86_64-linux-gnu.so
[에러] nvcc 못 찾을경우
  • 절대 경로로 수정 후 실행
[에러] arning: calling a constexpr __host__ function from a __host__ __device__ function is not allowed.
  • make.sh파일에 아래 flag --expt-relaxed-constexpr 추가
if [ -d "$CUDA_PATH" ]; then
    nvcc -std=c++11 -c -o roi_pooling_op.cu.o roi_pooling_op_gpu.cu.cc \
        -I $TF_INC -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC $CXXFLAGS \
        -arch=sm_37 --expt-relaxed-constexpr

3. Preprocess data (./src/data.py)

kitti기준, didi data 이용시 utils/bag_to_kitti 실행 필요

  • MV3D net 학습시 필요한 입력 데이터 생성
    • Lidar bird eye view features
    • Lidar front view features
    • RGB image
    • Ground Truth label
    • Ground bounding box coordinate
    • time stamp
./data/preprocessing/kitti/
    - gt_boxes3d :npy
    - gt_box_plot : png
    - gt_labels : npy
    - rgb : png
    - top : .npy.npz
    - top_image : png

3.9 수정 필요

A. data.py 수정

작업 환경



#data.py

if config.cfg.USE_CLIDAR_TO_TOP:
    SharedLib = ctypes.cdll.LoadLibrary('/workspace/mv3d/src/lidar_data_preprocess/'
                                        'Python_to_C_Interface/ver3/LidarTopPreprocess.so')
#if config.cfg.USE_CLIDAR_TO_TOP:
#    SharedLib = ctypes.cdll.LoadLibrary('/home/stu/MV3D/src/lidar_data_preprocess/'
#                                        'Python_to_C_Interface/ver3/LidarTopPreprocess.so')

B. NameError: name 'MATRIX_Mt' is not defined

# /MV3D/src/net/processing/boxes3d.py 상단에 추가 
# ./src/config.py L126 참고 
#rgb camera
MATRIX_Mt = ([[ 2.34773698e-04, 1.04494074e-02, 9.99945389e-01, 0.00000000e+00],
[ -9.99944155e-01, 1.05653536e-02, 1.24365378e-04, 0.00000000e+00],
[ -1.05634778e-02, -9.99889574e-01, 1.04513030e-02, 0.00000000e+00],
[ 5.93721868e-02, -7.51087914e-02, -2.72132796e-01, 1.00000000e+00]])

MATRIX_Kt = ([[ 721.5377, 0. , 0. ],
[ 0. , 721.5377, 0. ],
[ 609.5593, 172.854 , 1. ]])

A. ./src/config.py

#if __C.DATA_SETS_TYPE=='test':
#    __C.DATA_SETS_DIR = osp.abspath('/home/stu/round12_data_test')

if __C.DATA_SETS_TYPE=='test':
    __C.DATA_SETS_DIR = osp.abspath('/workspace/mv3d')

B. roi_pooling.so을 심볼릭이 아닌 파일로 대체

이후에도 같은 문제가 발생 하므로 [C]방법 추천

cd ./src/net/roipooling_op
mv roi_pooling.so roi_pooling.so~
cp ../../net/lib/roi_pooling_layer/roi_pooling.so ./

C. roi_pooling.so 수정 버젼 다운 로드

  1. 다운로드 roi_pooling.so

  2. chmod +x roi_pooling.so

4. train.py

[에러] "tensorflow.python.framework.errors_impl.NotFoundError: YOUR_FOLDER/roi_pooling.so: undefined symbol: ZN10tensorflow7strings6StrCatB5cxx11ERKNS0_8AlphaNumES3"
  • it is related to compilation of roi_pooling layer.
  • A simple fix will be changing "GLIBCXX_USE_CXX11_ABI=1" to "GLIBCXX_USE_CXX11_ABI=0" in "src/net/lib/make.sh" (line 17)

OR Download and replace the .so with following file :[Download], CUDA 8.0, Python 3.5

[에러] NameError: name 'data_splitter' is not defined

user this version of train.py: for python2

[에러] "module 'tensorflow.python.ops.nn' has no attribute 'convolution'"

conda list | grep tensorflow후 tensorflow(cpu & gpu) 버젼을 1.0 이상으로 변경


File Structure

├── data   <-- all data is stored here. (Introduced in detail below)
│   ├── predicted  <-- after prediction, results will be saved here.
│   ├── preprocessed   <-- MV3D net will take inputs from here(after data.py) 
│   └── raw <-- raw data
├── environment_cpu.yml  <-- install cpu version.
├── README.md
├── saved_model                 <--- model and weights saved here. 
├── src        <-- MV3D net related source code 
│   ├── config.py
│   ├── data.py
│   ├── didi_data
│   ├── kitti_data
│   ├── lidar_data_preprocess
│   ├── make.sh
│   ├── model.py
│   ├── mv3d_net.py
│   ├── net
│   ├── play_demo.ipynb
│   ├── __pycache__
│   ├── tracking.py   <--- prediction after training. 
│   ├── tracklets
│   └── train.py    <--- training the whole network. 
│── utils    <-- all related tools put here, like ros bag data into kitti format
│    └── bag_to_kitti  <--- Take lidar value from ROS bag and save it as bin files.
└── external_models    <-- use as a submodule, basically code from other repos.
    └── didi-competition  <--- Code from Udacity's challenge repo with slightly modification, sync with Udacity's new
     updates regularly.

Related data are organized in this way. (Under /data directory)

├── predicted <-- after prediction, results will be saved here.
│   ├── didi <-- when didi dataset is used, the results will be put here
│   └── kitti <-- When kitti dataset used for prediction, put the results here
│       ├── iou_per_obj.csv   <-- What will be evaluated for this competition, IoU score
│       ├── pr_per_iou.csv   <--precision and recall rate per iou, currently not be evaluated by didi's rule
│       └── tracklet_labels_pred.xml  <-- Tracklet generated from prediction pipeline. 
├── preprocessed  <-- Data will be fed into MV3D net (After processed by data.py)
│   ├── didi <-- When didi dataset is processed, save it here
│   └── kitti <-- When Kitti dataset is processed, save it here
│       ├── gt_boxes3d
│           └── 2011_09_26
│               └── 0005
|                   |___ 00000.npy
├       |── gt_labels
│           └── 2011_09_26
│               └── 0005 
|                   |___ 00000.npy
|       ├── rgb
│           └── 2011_09_26
│               └── 0005 
|                   |___ 00000.png
|       ├── top
│           └── 2011_09_26
│               └── 0005 
|                   |___ 00000.npy
|       └── top_image
|           └── 2011_09_26
|               └── 0005 
|                   |___ 00000.png
└── raw  <-- this strictly follow KITTI raw data file format, while seperated into didi and kitti dataset. 
    ├── didi <-- will be something similar to kitti raw data format below. 
    └── kitti
        └── 2011_09_26
            ├── 2011_09_26_drive_0005_sync
            │   ├── image_02
            │   │   ├── data
            │   │   │   └── 0000000000.png
            │   │   └── timestamps.txt
            │   ├── tracklet_labels.xml
            │   └── velodyne_points
            │       ├── data
            │       │   └── 0000000000.bin
            │       ├── timestamps_end.txt
            │       ├── timestamps_start.txt
            │       └── timestamps.txt
            ├── calib_cam_to_cam.txt
            ├── calib_imu_to_velo.txt
            └── calib_velo_to_cam.txt

results matching ""

    No results matching ""