PCL-Cpp (70%)
1. Statistical Outlier Removal
코드는 [이곳]에서 다운로드 가능합니다. 샘플파일은 [table_scene_lms400.pcd]을 사용하였습니다.
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/statistical_outlier_removal.h>
// Removing outliers using a StatisticalOutlierRemoval filter
// http://pointclouds.org/documentation/tutorials/statistical_outlier.php#statistical-outlier-removal
int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
// *.PCD 파일 읽기 (https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd)
pcl::PCDReader reader;
reader.read<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);
// 포인트수 출력
std::cerr << "Cloud before filtering: " << std::endl;
std::cerr << *cloud << std::endl;
// 오브젝트 생성
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
sor.setInputCloud (cloud); //입력
sor.setMeanK (50); //분석시 고려한 이웃 점 수(50개)
sor.setStddevMulThresh (1.0); //Outlier로 처리할 거리 정보
sor.filter (*cloud_filtered); // 필터 적용
// 생성된 포인트클라우드 수 출력
std::cerr << "Cloud after filtering: " << std::endl;
std::cerr << *cloud_filtered << std::endl;
// 생성된 포인트클라우드(inlier) 저장
pcl::PCDWriter writer;
writer.write<pcl::PointXYZ> ("table_scene_lms400_inliers.pcd", *cloud_filtered, false);
// 생성된 포인트클라우드(outlier) 저장
sor.setNegative (true);
sor.filter (*cloud_filtered);
writer.write<pcl::PointXYZ> ("table_scene_lms400_outliers.pcd", *cloud_filtered, false);
return (0);
}
실행 & 결과
$ Loaded : 460400
$ Filtered : 451410
시각화 & 결과
$ pcl_viewer table_scene_lms400.pcd
$ pcl_viewer StatisticalOutlierRemoval.pcd
$ pcl_viewer StatisticalOutlierRemoval_Neg.pcd
원본 | 결과 | 결과(SetNegarive) |
원본(확대) | 결과(확대) |
2. Radius Outlier removal
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/radius_outlier_removal.h>
// Removing outliers using a Conditional or RadiusOutlier removal
// http://pointclouds.org/documentation/tutorials/remove_outliers.php#remove-outliers
int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
// *.PCD 파일 읽기 (https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd)
pcl::io::loadPCDFile<pcl::PointXYZ> ("table_scene_lms400.pcd", *cloud);
// 포인트수 출력
std::cout << "Loaded : " << cloud->width * cloud->height << std::endl;
// 오프젝트 생성
pcl::RadiusOutlierRemoval<pcl::PointXYZ> outrem;
outrem.setInputCloud(cloud); //입력
outrem.setRadiusSearch(0.01); //탐색 범위 0.01
outrem.setMinNeighborsInRadius (10); //최소 보유 포인트 수 10개
outrem.filter (*cloud_filtered); // 필터 적용
// 포인트수 출력
std::cout << "Result : " << cloud_filtered->width * cloud_filtered->height << std::endl;
// 생성된 포인트클라우드(inlier) 저장
pcl::PCDWriter writer;
writer.write<pcl::PointXYZ> ("Radius_Outlier_Removal.pcd", *cloud_filtered, false);
// 생성된 포인트클라우드(outlier) 저장
outrem.setNegative (true);
outrem.filter (*cloud_filtered);
writer.write<pcl::PointXYZ> ("Radius_Outlier_Removal_Neg.pcd", *cloud_filtered, false);
return (0);
}
실행 & 결과
$ Loaded : 460400
$ Result : 455495
시각화 & 결과
$ pcl_viewer table_scene_lms400.pcd
$ pcl_viewer Radius_Outlier_Removal.pcd
$ pcl_viewer Radius_Outlier_Removal_Neg.pcd
원본 | 결과 | 결과(SetNegarive) |
Removing outliers using a StatisticalOutlierRemoval filter
내부 코드 설명 :PCL Series 6 - Statistical Filtering (outlier point culling)
Removing outliers using a Radius Outlier removal
내부 코드 : PCL Series 7 - Radius Filtering (outlier point culling)