Search-Kdtree-PCL-Python (70%)

C++ 코드는 [이곳]에서 다운로드 가능합니다. 원본 코드는 [이곳]을 참고 하였습니다. 샘플파일은 [cloud_cluster_0.pcd]을 사용하였습니다. Jupyter 버젼은 [이곳]에서 확인 가능 합니다.

!python --version 
!pip freeze | grep pcl
Python 2.7.15rc1
python-pcl==0.3
import numpy as np
import pcl
import random
import pcl_helper
cloud = pcl.load("cloud_cluster_0.pcd")
kdtree = cloud.make_kdtree_flann()

SeartchPont 설정

  • 3000번째 포인트
searchPoint = pcl.PointCloud()
searchPoints = np.zeros((1,3), dtype=np.float32)
searchPoints[0][0] = cloud[3000][0]
searchPoints[0][1] = cloud[3000][1]
searchPoints[0][2] = cloud[3000][2]

searchPoint.from_array(searchPoints)
K = 10
print('K nearest neighbor search at (' + str(searchPoint[0][0]) + ' ' + str(
        searchPoint[0][1]) + ' ' + str(searchPoint[0][2]) + ') with K=' + str(K))
K nearest neighbor search at (0.0346005521715 -1.46636068821 0.975462853909) with K=10
[ind, sqdist] = kdtree.nearest_k_search_for_cloud(searchPoint, K)
for i in range(0, ind.size):
    print('(' + str(cloud[ind[0][i]][0]) + ' ' + str(cloud[ind[0][i]][1]) + ' ' + str(
        cloud[ind[0][i]][2]) + ' (squared distance: ' + str(sqdist[0][i]) + ')')
(0.0346005521715 -1.46636068821 0.975462853909 (squared distance: 0.0)
(0.0317970663309 -1.46587443352 0.975684165955 (squared distance: 8.14496e-06)
(0.0374080836773 -1.46704232693 0.975152671337 (squared distance: 8.44308e-06)
(0.0345886982977 -1.46636962891 0.978524148464 (squared distance: 9.37174e-06)
(0.0346124246716 -1.46635174751 0.972395777702 (squared distance: 9.40718e-06)
(0.0373939499259 -1.46708440781 0.978200435638 (squared distance: 1.58212e-05)
(0.0318062528968 -1.46585941315 0.972620844841 (squared distance: 1.61364e-05)
(0.0317878909409 -1.46588945389 0.978741645813 (squared distance: 1.88836e-05)
(0.0374225899577 -1.46703207493 0.972084701061 (squared distance: 1.98266e-05)
(0.0289955306798 -1.4653942585 0.975902557373 (squared distance: 3.25436e-05)
radius = 0.02
print('Neighbors within radius search at (' + str(searchPoint[0][0]) + ' ' + str(
        searchPoint[0][1]) + ' ' + str(searchPoint[0][2]) + ') with radius=' + str(radius))
Neighbors within radius search at (0.0346005521715 -1.46636068821 0.975462853909) with radius=0.02
[ind, sqdist] = kdtree.radius_search_for_cloud(searchPoint, radius)
for i in range(0, ind.size):
    print('(' + str(cloud[ind[0][i]][0]) + ' ' + str(cloud[ind[0][i]][1]) + ' ' + str(
        cloud[ind[0][i]][2]) + ' (squared distance: ' + str(sqdist[0][i]) + ')')

results matching ""

    No results matching ""