List
Paper
Article / Post
- Tensorflow Official Tutorial_CNN
- Tensorflow Official Tutorial_Image Recognition
- TensorFlow 로 시작하는 기계 학습과 딥 러닝 : CodeOnWeb의 총 9장중 6장 공개
- 텐서플로우 문서 한극 번역본 : 번역본, GitBoot버젼
- git_eBook_Machine Learning with TensorFlow : [1장][설명]
- 수포자를 위한 딥러닝: 조대협의 블로그
- https://jasdeep06.github.io/
- 웹기반학습_TensorFlow : Beginner-level tutorials for a powerful framework
- Tensorflow and deep learning - without a PhD : by Martin Görner, [정리], [자료1], [자료2]
- TensorFlow in R: [한글참고]
- Youtube:TensorFlow Tutorial & 소스코드
- ppt_PT:TensorFlow Tutorial
- ppt_Toward Best Practices of TensorFlow Code Patterns
- ppt_중학생도 알아듣는 Tensorflow입문
- ppt_텐서플로우 기초 이해하기
- ppt_TensorFlow Tutorial
- ppy_TenforFlow Internals
- Image Classification in R using trained TensorFlow models
- TensorFlow in a Nutshell : [Part One:Basic],[Part Two: Hybrid Learning],[Part Three: All the Models]
- ppt: Google TensorFlow Tutorial : 김성훈 교수 추천 자료
- ppt: Toward Best Practices of TensorFlow Code Patterns, [Github]
- pdf: TensorFlow Worksop : [김성훈교수 추천] 간단한 모델, 데이터 읽기, Word2Vec, 인셥션 모델 재사용, hyperparameter 자동튜닝, TensorBoard, [GitHub]
A quick complete tutorial to save and restore Tensorflow models
Transitioning to TensorFlow 1.0: 텐서플로우 2.0 -> 1.0 변환
Material
Tensorflow-Slim
TensorDebugger
디버깅
Tutorial
- 골빈해커의 3분 딥러닝: 추천
기초 강좌 (3_고급_SJCHOI86)
- 기본
Basics of TensorFlow: 텐서플로우 변수, 상수 처리법MNIST: 이미지 읽기 부분만Numpy: numpy, Matplot기초Image Processing: 이미지 읽기, 크기조절 등Generating Custom Dataset: Helper 함수, 기능
- Machine Learing Basics with TensorFlow:
Linear Regression: 난수 생성후 리그레이션 수행 W,b 맞추기- Logistic Regression with MNIST
- Logistic Regression with Custom Dataset
- Multi-Layer Perceptron (MLP)
- Convolutional Neural Network (CNN)
- Using Pre-trained Model (VGG)
- Recurrent Neural Network (RNN)
- Word Embedding (Word2Vec)
- Auto-Encoder Model
- Class Activation Map (CAM): Global Average Pooling on MNIST
- TensorBoard Usage: Linear Regression / MLP / CNN
- Semantic segmentation
- Super resolution (in progress)
- Web crawler
- Gaussian process regression
- Neural Style
- Face detection with OpenCV