Crop
print("We load a polygon volume and use it to crop the original point cloud")
vol = read_selection_polygon_volume("../../TestData/Crop/cropped.json")
chair = vol.crop_point_cloud(pcd)
draw_geometries([chair])
print("")
#./TestData/Crop/cropped.json File contents:
{
"axis_max" : 4.022921085357666,
"axis_min" : -0.76341366767883301,
"bounding_polygon" :
[
[ 2.6509309513852526, 0.0, 1.6834473132326844 ],
[ 2.5786428246917148, 0.0, 1.6892074266735244 ],
[ 2.4625790337552154, 0.0, 1.6665777078297999 ],
[ 2.2228544982251655, 0.0, 1.6168160446813649 ],
[ 2.166993206001413, 0.0, 1.6115495157201662 ],
[ 2.1167895865303286, 0.0, 1.6257706054969348 ],
[ 2.0634657721747383, 0.0, 1.623021658624539 ],
[ 2.0568612343437236, 0.0, 1.5853892911207643 ],
[ 2.1605399001237027, 0.0, 0.96228993255083017 ],
[ 2.1956669387205228, 0.0, 0.95572746049785073 ],
[ 2.2191318790575583, 0.0, 0.88734449982108754 ],
[ 2.2484881847925919, 0.0, 0.87042807267013633 ],
[ 2.6891234157295827, 0.0, 0.94140677988967603 ],
[ 2.7328692490470647, 0.0, 0.98775740674840251 ],
[ 2.7129337547575547, 0.0, 1.0398850034649203 ],
[ 2.7592174072415405, 0.0, 1.0692940558509485 ],
[ 2.7689216419453428, 0.0, 1.0953914441371593 ],
[ 2.6851455625455669, 0.0, 1.6307334122162018 ],
[ 2.6714776099981239, 0.0, 1.675524657088997 ],
[ 2.6579576128816544, 0.0, 1.6819127849749496 ]
],
"class_name" : "SelectionPolygonVolume",
"orthogonal_axis" : "Y",
"version_major" : 1,
"version_minor" : 0
}
RANSAC
https://nbviewer.jupyter.org/url/lang.sist.chukyo-u.ac.jp/Classes/Open3D/Open3D.ipynb#RANSAC
print("5. RANSAC registration on down-sampled point clouds.")
print(" Since the downsampling voxel size is 0.05, we use a liberal")
print(" distance threshold 0.075.")
result_ransac = registration_ransac_based_on_feature_matching(
source_down, target_down, source_fpfh, target_fpfh,
fpfh, max_correspondence_distance = 0.075,
TransformationEstimationPointToPoint(False),
ransac_n = 4,
[CorrespondenceCheckerBasedOnEdgeLength(0.9),
CorrespondenceCheckerBasedOnDistance(0.075)],
RANSACConvergenceCriteria(max_iteration = 4000000, max_validation = 500))
print(result_ransac)
draw_registration_result(source_down, target_down,
result_ransac.transformation)