Extracting indices from a PointCloud
How to use Random Sample Consensus model : 모델이 주어진 상태에서 RANSAC을 이용하여 파라미터 찾아 inlider 찾기
Projecting points using a parametric model : 모델과, 파라미터(coefficients)가 주어진 상태에서 RANSAC을 이용하여 inlier찾기
In this tutorial we will learn how to use an :pcl:ExtractIndices <pcl::ExtractIndices>
filter to extract a subset of points from a point cloud based on the indices output by a segmentation algorithm.
In order to not complicate the tutorial, the segmentation algorithm is not explained here. Please check the Plane model segmentation tutorial for more information.
code
#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/extract_indices.h>
int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGB>), cloud_p (new pcl::PointCloud<pcl::PointXYZRGB>), cloud_f (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::io::loadPCDFile<pcl::PointXYZRGB> ("tabletop.pcd", *cloud);
std::cout << "Loaded :" << cloud->width * cloud->height << std::endl;
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
// Create the segmentation object
pcl::SACSegmentation<pcl::PointXYZRGB> seg;
// Optional
seg.setOptimizeCoefficients (true);
// Mandatory
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (1000);
seg.setDistanceThreshold (0.01);
// Create the filtering object
pcl::ExtractIndices<pcl::PointXYZRGB> extract;
int i = 0, nr_points = (int) cloud->points.size ();
// While 30% of the original cloud is still there
while (cloud->points.size () > 0.3 * nr_points)
{
// Segment the largest planar component from the remaining cloud
seg.setInputCloud (cloud);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
break;
}
// Extract the inliers
extract.setInputCloud (cloud);
extract.setIndices (inliers);
extract.setNegative (false);
extract.filter (*cloud_p);
std::cerr << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl;
std::stringstream ss;
ss << "table_scene_lms400_plane_" << i << ".pcd";
pcl::PCDWriter writer2;
writer2.write<pcl::PointXYZRGB> (ss.str (), *cloud_p, false);
// Create the filtering object
extract.setNegative (true);
extract.filter (*cloud_f);
cloud.swap (cloud_f);
i++;
}
return (0);
}
간단 버젼
#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/extract_indices.h>
int
main (int argc, char** argv)
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGB>), cloud_p (new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::io::loadPCDFile<pcl::PointXYZRGB> ("tabletop_passthrough.pcd", *cloud);
std::cout << "Loaded :" << cloud->width * cloud->height << std::endl;
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
// Create the segmentation object
pcl::SACSegmentation<pcl::PointXYZRGB> seg;
// Optional
seg.setOptimizeCoefficients (true);
// Mandatory
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (1000);
seg.setDistanceThreshold (0.01);
// Create the filtering object
pcl::ExtractIndices<pcl::PointXYZRGB> extract;
seg.setInputCloud (cloud);
seg.segment (*inliers, *coefficients);
// Extract the inliers
extract.setInputCloud (cloud);
extract.setIndices (inliers);
extract.setNegative (false);//true
extract.filter (*cloud_p);
std::cerr << "Filtered : " << cloud_p->width * cloud_p->height << " data points." << std::endl;
std::stringstream ss;
ss << "RANSAC_plane.pcd";
pcl::PCDWriter writer2;
writer2.write<pcl::PointXYZRGB> (ss.str (), *cloud_p, false);
return (0);
}